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Nonstandard Variational Calculus with
Applications to Classical Mechanics. 1. An
Existence Criterion

F. Bagarello1

Received July 17, 1998

Using the framework of nonstandard analysis, I find the discretized version of
the Euler±Lagrange equation for classical dynamical systems and discuss the
existence of an extremum for a given functional in variational calculus. Some
results related to the Cauchy existence theorem are obtained and discussed with
various examples.

1. INTRODUCTION

In the recent decades the heuristic idea of infinite and infinitesimal

numbers has obtained formal rigor due to the work of Robinson.(1) He essen-
tially proved that the field of real numbers R can be considered as a proper

subset of a new field R* which contains both numbers larger than any positive

real number (infinite) and positive numbers smaller than any positive real

number (infinitesimal).

Many papers have been produced on this subject, especially from the

mathematical point of view. In the last 20 years, some physical applications
also have appeared in the literature (see refs. 2±8 and references therein).

On the other hand, the enormous improvement of computer-aided tech-

niques for solving physical and/or mathematical problems has prompted

many workers to develop different discretization procedures in many different

contexts (see ref. 9 and references therein for some applications). A natural

requirement is that any ª discretizedº model must coincide with its continuous
counterpart whenever the discretization parameter h goes to zero, so that
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the differences between the two models are negligible for h small enough.

Nonstandard analysis (NSA) provides a rather natural framework where these

kinds of problems can be discussed.
In this paper we investigate the possibility of using NSA to compute the

extremum of a given functional J[y] [ * b
a F(x, y, y8) dx satisfying the bound-

ary conditions y(a) 5 A and y(b) 5 B. We will show that this is possible.

The action principle will produce a set of ns-finite (see below) algebraic

equations whose solution differs from the standard one, that is, the one

obtained by solving the usual Euler±Lagrange differential equation related
to the functional J[q],(10) for an infinitesimal quantity.

Furthermore we will prove that these equations, which we will call

nonstandard Euler±Lagrange equations (NSELE), coincide with the equations

one would obtain by discretizing directly the standard Euler±Lagrange equa-

tion (SELE).

Finally, many examples are discussed to show the applicability of the
method and its limits.

We end this Introduction with a bit of notation: here and in the following

we indicate by s or standard any quantity which ª livesº in R, while ns or

nonstandard will be used for numbers, functions or whatever has a meaning

only in R*. For instance, we will say that the number a is s-finite if there
exists a positive real r such that ) a ) , r , ` . We refer to refs. 1 and 11 for

more information on NSA .

2. VARIATIONAL CALCULUS AND THE DISCRETIZATION OF
THE ACTION INTEGRAL

Let F(x, y, z) be a function with all the first and second partial derivatives

continuous. Our main task will be to find, among all the functions y(x) at

least continuously differentiable such that y(a) 5 A and y(b) 5 B, those for

which the functional

J[y] [ #
b

a

F (x, y, y8) dx (2.1)

has an extremum.

This is a well-known problem, widely discussed in the literature (e.g.,
refs. 10, 12, 13), which is solved once the SELE

Fy 2
d

dx
Fy8 5 0 (2.2)

is solved, and the solutions coincide. In particular, in ref. 10 it is proved, for

instance, that a solution of (2.2) satisfying the correct boundary conditions

is also an extremum of the functional J[y].
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In classical mechanics, in order to describe a point particle, one takes

F(x, y, z) to be the Lagrangian of the system, L(t, q, qÇ ). Here t is the time,

q 5 q(t) is the position of the point particle, and qÇ (t) is its time derivative.
We refer to refs. 14 and 15 for many details on the Lagrangian approach to

classical mechanics. In this way one obtains a different form of the second

principle of the dynamics

F 5 ma

where F is the force applied to the particle and a its acceleration. Finding a

solution of equation (2.2) with y(a) 5 A and y(b) 5 B is now a typical

example of a boundary value problem.
Many textbooks of calculus of variations discuss the possibility of finding

an approximate solution of the extremum problem. Various possibilities are

proposed: the one we consider here is known as the finite difference
method.(10,16) Taking this method as our starting point, we will show in this

paper that NSA makes it possible to translate the SELE into an infinite set

of algebraic equations whose solution differs in most cases from the standard
solution of the differential equation (2.2) by an infinitesimal quantity. Of

course this means that the nonstandard version of the finite difference method

is really very close, if not equivalent, to the original standard approach and

it is not merely an approximation.

In NSA an s-bounded function f : [a, b] ® R is (Riemann) integrable if

there exists s-finite

st[ o
a # jh # b

f ( jh)h]

and this quantity does not depend on the choice of the infinitesimal h.(11) We

recall that, given a hyperreal a P R*, its standard part, st[a], is the (unique)

real number such that a 2 st[a] P R0, where R0 indicates the subset of R*
of all the infinitesimal numbers.

Let us assume therefore that the function L(t, q, z) is integrable in [ti , tf]
with respect to t, where q and z are functions of t. Let furthermore D belong

to N*, the set of hypernatural numbers, and h [ (tf 2 ti)/ D . We introduce

the following partition of the interval [ti , tf]: t0 5 ti , t D 5 tf , and tk 5 tk 2 1

1 h for all k, between 1 and D 2 1. Therefore, if D is s-infinite, by definition

J[q] [ #
tf

ti

L(t, q(t), qÇ (t))dt 5 st F h o
D 2 1

k 5 0

L(tk , qk , qÇ k) G (2.3)

where qk [ q(tk) and qÇ k [ qÇ (tk). Of course, due to the hypothesis of integrability

of the function L, the above result is independent of the choice of h .
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The ª timeº derivative qÇ k(t) can be defined in different ways: we, could

for instance, use central differences (see ref. 17, p. 192), but we would rather

use the following more natural definition:

qÇ k(t) [ st F qk 1 1(t) 2 qk(t)

h G 5 st F q(tk 1 1) 2 q(tk)

h G (2.4)

5 st F q(tk 1 h ) 2 q(tk)

h G
The reason central differences are used in numerical integration of differ-

ential equations is that they allow a numerical error of O( h 2) instead of

O( h ).(17) We will come back to this point in the last section. Here we only

want to note that, since h P R0, this difference will not be crucial because

in both cases we will conclude that this error belongs to R0.

Even if the equality in equation (2.3) holds only if h P R0, we will

always consider first h as a small quantity not in R0 and we will take h in
R0 only at a second time. Therefore, it is interesting to estimate the difference

between the action J[q] and its approximation h ( D 2 1
k 5 0 L(tk , qk , qÇ k). In particu-

lar, we want to show that, under appropriate regularity conditions on the

function L, this difference will be proportional to h . Furthermore, we will

also show that the substitution qÇ k(t) ® [q(tk 1 h ) 2 q(tk)]/ h does not distroy

this estimate. Namely, we will prove that, calling

qk h (t) [
q(tk 1 h ) 2 q(tk)

h
(2.5)

the estimate

Z # tf

ti

L(t, q(t), qÇ (t))dt 2 h o
D 2 1

k 5 0

L(tk , qk , qk h ) Z 5 O( h )

still holds true. This estimate seems to suggest that the nonstandard Euler

finite-difference method can be conveniently applied; in fact, our double
approximation [integration ® sum, qÇ k(t) ® qk h (t)] does not modify J[q] for

more than a constant times h . However, this is not a proof of the validity of

this approach, which can only be ensured by some a priori estimate on the

difference between the solution of the SELE and the solution of the system

we are going to find below, (2.14). Nevertheless, it is obviously interesting

to know what happens to J[q] after the discretization procedure, since it
may be interpreted as a measure of the ª closenessº of the standard and

nonstandard techniques.

Once this estimate is proved we will proceed as for the canonical approxi-

mate computation of the extremum of a functional,(10,16) and we will get a
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system of D 2 1 equations with D 2 1 variables. We will discuss, using

various examples, the utility of this system, focusing in particular on the role

of h . We will analyze with care what happens if h is taken in R0.
Using a slightly different notation than ref. 11, we will say that a function

f : R* ® R* is ns-continuous if for all x ’ y, f(x) ’ f( y). By x ’ y we mean

that x and y have the same standard part or, equivalently, that they belong

to the same monad. It is worth recalling that in the same reference it is shown

that if f : R ® R and x P R are both standard, then f is ns-continuous in x
if and only if f is continuous in x. Many examples are also discussed in order
to show that this equivalence does not hold if f or x (or both) is nonstandard.

Let us define the following quantities:

J[q1, qÇ 1, . . . , q D 2 1, qÇ D 2 1] [ o
D 2 1

k 5 0

L(tk , qk , qÇ k) ? h (2.6)

J[q1, . . . , q D 2 1] [ o
D 2 1

k 5 0
L(tk , qk , qk h ) ? h (2.7)

The following proposition holds:

Proposition 1. Let L(t, q(t), qÇ (t)) be a differentiable function for which

a positive constant M exits such that ) (d/dt) L(t, q(t), qÇ (t)) ) , M, " t P [ti ,
tf]. Then

) J[q] 2 J [q1, qÇ 1, . . . , q D 2 1, qÇ D 2 1] ) #
h
2

M(tf 2 ti) (2.8)

Moreover, if L is ns-continuous in qÇ (t) and h is taken in R0, then

st[J[q1, qÇ 1, . . . , q D 2 1, qÇ D 2 1]] 5 st[J[q1, . . . , q D 2 1]] (2.9)

Proof. The first statement can be deduced with an easy adaptation of

some well-known techniques of Riemann integration. We essentially split
the integral from ti to tf into a sum of integrals from tk to tk 1 h , for k 5 0,

1, . . . , D 2 1. Each of these contributions is then approximated using Taylor ’ s

formula around h 5 0. For instance,

#
t1

t0

L(t, q(t), qÇ (t))dt

5 L(t0, q(t0), qÇ (t0))

1
d

d m
L( m 1 t0, q( m 1 t0), qÇ ( m 1 t0)) ) m 5 j 1

h 2

2

where t0 # j 1 # t1.
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We get

J[q] 5 o
D 2 1

k 5 0
L(tk , qk , qÇ k) ? h

1 o
D

k 5 1

d

d m
L(t0 1 m , q(t0 1 m ), qÇ (t0 1 m )) ) m 5 j k

h 2

2

where, for all k 5 0, 1, 2, 3, . . . , D 2 1, we have tk # j k 1 1 # tk 1 1. This

equation, definition (2.6), and the hypothesis on L give estimate (2.8).

To prove the second part of the proposition we first observe that the

ns-continuity of L in qÇ (t) implies, since st[qÇ (t)] 5 st[{q(t 1 h ) 2 q(t)}/ h ], that

st[L(t, q(t), qÇ (t))] 5 st F L 1 t, q(t),
q(t 1 h ) 2 q(t)

h 2 G (2.10)

Using the linearity of the standard part, from definitions (2.6) and (2.7), we get

st[J[q1, qÇ 1, . . . , qÇ D 2 1] 2 J[q1, . . . , q D 2 1]]

5 st F o
D 2 1

k 5 0

L(tk , qk , qÇ k (t)) ? h 2 o
D 2 1

k 5 0

L(tk , qk , qk h ) ? h G 5 0

This follows from the equality (2.10), which holds for all t in [ti , tf], and

from the fact that h ? ( D 2 1
k 5 0 5 h ? D 5 tf 2 ti, which is an s-finite quantity.

Remarks. 1. We stress that equation (2.9) essentially says that, like

the function J[q1, qÇ 1, . . . , q D 2 1, qÇ D 2 1], also J[q1, . . . , q D 2 1] differs from J[q]

for something which is proportional to h (eventually raised to some positive

power). Therefore it is reasonable to consider J[q1, . . . , q D 2 1] as a good
approximation of J[q], or, in other words, to put J[q] 5 st[J[q1, . . . , q D 2 1]].

2. We are not requiring to L to be a standard map. However, this is

what usually happens, for instance, in most physical situations. The hypothesis

of the previous proposition show that it can also be applied to the case in

which L is an ns-function.
3. If L is the Lagrangian of a physical conservative system,(14,15) then

using the SELE, we get

dL

dt
5

d

dt 1 - L

- qÇ
qÇ 2 1

- L

- t
5

d

dt 1 - L

- qÇ
qÇ 2

The last equality follows from the fact that, since the energy must be con-

served,(14) the Lagrangian cannot depend explicitly on the time t. In further

detail, if L describes a particle with unit mass in a conservative potential we

get ( - L/ - qÇ )qÇ 5 2T, where T is the kinetic energy of the particle. Therefore
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the hypothesis of the proposition simply says that the kinetic energy cannot

have a divergent time derivative. This is physically more than reasonable

since T is usually a regular function of t (more than C (1), so that its derivative
is certainly bounded in any bounded time interval.

Let us now look for the critical points of J[q1, . . . , q D 2 1]. These are

the points that satisfy the set of equations

- J[q1, . . . , q D 2 1]

- qk

5 0, k 5 1, 2, . . . , D 2 1 (2.11)

which in NSA are rewritten as

st F J[q1, . . . , qk 1 t , . . . , q D 2 1] 2 J[q1, . . . , q D 2 1]

t G 5 0,

k 5 1, 2, . . . , D 2 1 (2.12)

where t P R0. We observe that all the contributions in the sum defining J[q1,

. . . , q D 2 1] but two cancel each other in the above difference. This is obviously

due to the presence of qk in only two terms of the sum in (2.7). After some
easy calculations we see that equations (2.12) can be explicitly written as

st F h
t H L 1 tk 2 1, qk 2 1,

qk 1 t 2 qk 2 1

h 2 1 L 1 tk , qk 1 t ,
qk 1 1 2 (qk 1 t )

h 2
2 L 1 tk 2 1, qk 2 1,

qk 2 qk 2 1

h 2 2 L 1 tk , qk ,
qk 1 1 2 qk

h 2 J G 5 0,

" k 5 1, 2, . . . , D 2 1 (2.13)

The presence of h in the numerator would trivialize all the equations if

it is taken in R0. Therefore, in order not to obtain the equality ª 0 5 0º for
all k, we simply forget h . This will be justified in the following and is related

to the fact that we have in mind to consider at a first stage h as a finite

(noninfinitesimal) quantity, and then consider it as an element of R0 only at

the very end. This explains why we are allowed at this stage to divide equation

(2.13) by h .
We conclude finally that the NSELE are the following set of D 2 1

equations

st F 1

t H L 1 tk 2 1, qk 2 1,
qk 1 t 2 qk 2 1

h 2 1 L 1 tk , qk 1 t ,
qk 1 1 2 (qk 1 t )

h 2
2 L 1 tk 2 1, qk 2 1,

qk 2 qk 2 1

h 2 2 L 1 tk , qk ,
qk 1 1 2 qk

h 2 J G 5 0,
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" k 5 1, 2, . . . , D 2 1 (2.14)

The solution of this system of equations, (q1, q2, . . . , q D 2 1), gives information

on the solution q(t) of the SELE: in fact the polygon passing through the

points (t0, q0), (t1, q1), (t2, q2),. . . . , (t D , q D ) approximates the solution q(t)
of the SELE, with the required boundary conditions, as soon as h is taken
small but real. If h P R0, then this polygonal is the solution of the classical

problem, in the sense that for any tk P [ti , tf] the value of qk is expected to

have the same standard part of q(tk). We will came back to this point in the

last section.

The following proposition shows that the system (2.14) is exactly the

discretization of the SELE with its boundary conditions.

Proposition 2. Let us consider the functional J[q] [ * tf
ti

L(t, q(t), qÇ (t))
dt, and its discretization J[q1, . . . , q D 2 1], with q0 5 qi and q D 5 qf for D P
N, s-finite. Then the system (2.14), if st[ h ] 5 0 (that is, in the limit D ®
` ), produces the Euler±Lagrange equation

- L

- q
2

d

dt

- L

- qÇ
5 0, q(ti) 5 qi , q(tf) 5 qf (2.15)

Proof. Let us first take h as a small noninfinitesimal quantity. Therefore,

considering the first and the third terms in (2.14), we have, with after sim-

ple algebra,

st F 1

t 1 L 1 tk 2 1, qk 2 1,
qk 1 t 2 qk 2 1

h 2 2 L 1 tk 2 1, qk 2 1,
qk 2 qk 2 1

h 2 G
5 st 3 L 1 tk 2 1, qk 2 1,

qk 1 t 2 qk 2 1

h 2 2 L 1 tk 2 1, qk 2 1,
qk 2 qk 2 1

h 2
(qk 1 t 2 qk 2 1)/ h 2 (qk 2 qk 2 1)/ h

3

qk 1 t 2 qk 2 1

h
2

qk 2 qk 2 1

h
t 4

5 st F L(tk 2 1, qk 2 1, qk 2 1 h 1 t / h ) 2 L(tk 2 1, qk 2 1, qk 2 1 h )

qk 2 1 h 1 t / h 2 qk 2 1 h

3
qk 2 1 h 1 t / h 2 qk 2 1 h

t G
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5
1

h
st F L(tk 2 1, qk 2 1, qk 2 1 h 1 t / h ) 2 L(tk 2 1, qk 2 1, qk 2 1 h )

qk 2 1 h 1 t / h 2 qk 2 1 h G
5

1

h
-

- qk 2 1 h
L(tk 2 1, qk 2 1, qk 2 1 h )

where the derivative must be obviously understood in the nonstandard sense.

Analogously, we can handle the second and the fourth terms of (2.14),

to obtain

st F 1

t 1 L 1 tk , qk 1 t ,
qk 1 1 2 (qk 1 t )

h 2 2 L 1 tk , qk ,
qk 1 1 2 q k

h 2 2 G
5

-
- qk

L(tk , qk , qk h ) 2
1

h
-

- qk h
L(tk , qk , qk h )

Therefore system (2.14) is equivalent to

-
- qk

L(tk , qk , qk h ) 2
1

h 1 -
- qk h

L(tk , qk , qk h ) 2
-

- qk 2 1 h
L(tk 2 1, qk 2 1, qk 2 1 h ) 2 5 0

" k 5 1, 2, . . . , D 2 1

Following refs. 10 and 16, we conclude that, when h P R0 (or, in standard
language, when D ® ` ), these equations ª convergeº to equation (2.15).

Remark. The above statement was not obvious a priori. It shows that

the discretization procedure can be applied with the same conclusions both

to the action J[q] and directly to the SELE. Therefore the extremum of J[q1,

. . . , q D 2 1] is also a solution of the discretized Euler±Lagrange equations,

and conversely.

3. EXAMPLES

Some of the examples of this section have a certain relevance in physics,

others will only be considered from a mathematical point of view.

We start considering a certain class of ª Lagrangiansº L(t, q(t), qÇ (t)): let

f(x) be any function (standard or not standard) of the (standard or not standard)
variable x. Then we put

Lf (t, q(t), qÇ (t)) [ qÇ 2(t) 1 f (q(t)) (3.1)

which does not depend explicitly on t. Some regularity conditions must be
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sought for f if we wish to require, for instance, continuity in q of L. It is

easy to see that for any such Lf Proposition 1 applies as far as qÇ (t) is s-

bounded. (11) This Lagrangian is of particular interest in physics since it con-
tains a kinetic term (but a factor 1/2) so that it really describes a classical

particle in a potential f(q). Its limitation on qÇ (t), which is satisfied, for instance,

whenever the time interval is a compact set and qÇ (t) is continuous, simply

says that the kinetic energy of the particle must be finite at any time.

Analogously one can show also that Lagrangians of the form

Lh(t, q(t), qÇ (t)) [ a qÇ n(t) 1 h(q(t), t) (3.2)

for any real a and any natural n satisfy the hypothesis of the same proposition.

However, for n Þ 2, Lh has no evident physical meaning.

Let us now start with the examples.

Example 1. L(q(t), qÇ (t)) 5 qÇ 2(t) 1 2q(t).
We want to find the extremum q(t) for the following functional J[q]:

J[q] 5 #
1

0

(qÇ 2(t) 1 2q(t)) dt

with the boundary conditions q(0) 5 q(1) 5 0. Using the SELE, we see that

q(t) must be a solution of qÈ (t) 5 1, with q(0) 5 q(1) 5 0. The solution

obviously exists and is unique: q(t) 5 (t2 2 t)/2.

We will now find the form of system (2.14) and we will show that these
NSELE allow us to conclude that a unique solution exists.

First we observe that L fits into the class (3.1), with f (q) 5 2q, so that

the discretization of J[q] is controlled.

Due to the given boundary conditions we have q0 5 q(0) 5 0 and q D 5
q(1) 5 0. Furthermore, " k 5 1, 2, . . . , D 2 1,

L 1 qk 2 1,
qk 1 t 2 qk 2 1

h 2 2 L 1 qk 2 1,
qk 2 qk 2 1

h 2 5
t 2

h 2 1 2 t
qk 2 qk 2 1

h 2

and

L 1 qk 1 t ,
qk 1 1 2 (qk 1 t )

h 2 2 L 1 qk ,
qk 1 1 2 qk

h 2 5
t 2

h 2 2 2 t
qk 1 1 2 qk

h 2 1 2 t

so that the final set of equations (2.14) is
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2qk 2 qk 2 1 2 qk 1 1 5 2 h 2, 1 # k # D 2 1 (3.3)

with q0 5 q D 5 0. (We remind the reader that, for the moment, h is small,

but not in R0, so that the number of equations D 2 1 is standard-finite.)
It is interesting to verify the statement of Proposition 2 using this exam-

ple: we can easily see that these equations are exactly the ones we would

get by discretizing the SELE for this model, qÈ (t) 5 1, with the substitution

q(t) ® qk , qÇ (t) ®
qk 1 1 2 qk

h
, qÈ (t) ®

qk 1 1 2 2qk 1 qk 2 1

h 2 (3.4)

which is a canonical procedure in numerical analysis. We can rewrite equa-
tions (3.3) in a matricial form:

M D 2 1 Q 5 2 h 2U (3.5)

where M D 2 1 is a ( D 2 1) 3 ( D 2 1) matrix, and Q and U are column vectors

with D 2 1 components:

M D 2 1 [ 1
2 2 1 0 . . 0 0

2 1 2 2 1 0 . . 0

0 2 1 2 2 1 0 . .

. . . . . . .

. . . . . . .

0 0 0 . 2 1 2 2 1

0 0 0 . 0 2 1 2 2 ,

Q [ 1
q1

q2

q3

.

.

q D 2 2

q D 2 1 2 , U [ 1
1

1

1

.

.

1

1 2
M D 2 1 is a tridiagonal matrix, which is the typical form of matrix obtained

in discretization procedures of any second-order linear differential equation.
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This topic is widely discussed in almost any book of numerical analysis,(18,19)

where also criteria for the invertibility of such matrices are given.

Following formula (A.2) in the Appendix, we are able to prove that " D
we have det M D 2 1 5 D . The proof is very simple and is obtained by induction

on D . Let D 5 2. Then det M D 2 1 5 det M1 5 2, so the first step is proved.

Let us now suppose that det Mn 2 1 5 n, " n # D , and let us try to

compute det M D . Using (A.2), we deduce that

det M D 5 2 det M D 2 1 2 12 det M D 2 2 5 2 D 2 ( D 2 1) 5 D 1 1

so that our claim is proved. The same result also can be obtained using

directly formula (A.7) for det M D 2 1 We deduce therefore that M D can be

inverted for all natural D . Of course, due to the increasing behavior of det

M D , the invertibility of the matrix is still true even when h is taken in R0,

so that the solution of our system exists and is unique:

Q 5 2 h 2M 2 1
D 2 1U

We will discuss in the next section the validity of this solution, that is, in

which sense Q is related to the solution of the SELE.

Example 2. L(t, q(t), qÇ (t)) 5 qÇ 2(t) 1 2tq(t) 1 q2(t).
Our functional is now

J[q] 5 #
1

0

(qÇ 2(t) 1 2tq(t) 1 q2(t)) dt

and we look for the extremum of J[q] satisfying the boundary conditions

q(0) 5 q(1) 5 0. Again, the SELE gives the unique solution q(t) 5 e(et 2 e 2 t)/

(e2 2 1) 2 t.
We observe that the Lagrangian we are considering belongs to the class

(3.2), with n 5 2, a 5 1, and h(q(t), t) 5 2tq(t) 1 q2(t), so that even in this

example the dicretization procedure of J[q] is under control.

System (2.14) becomes here

qk(2 1 h 2) 2 qk 2 1 2 qk 1 1 5 2 h 2tk (3.6)

with k 5 1, 2, 3, . . . , D 2 1, and with the boundary conditions q0 5 q D 5
0. This is just the same system we obtain by discretizing the SELE, as asserted

in Proposition 2.

Again, using a matricial notation, we can write
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L D 2 1 Q 5 2 h 2T (3.7)

where

L D 2 1 [ 1
2 1 h 2 2 1 0 . . 0 0

2 1 2 1 h 2 2 1 0 . . 0

0 2 1 2 1 h 2 2 1 0 . .

. . . . . . .

. . . . . . .

0 0 . . 2 1 2 1 h 2 2 1

0 0 . . 0 2 1 2 1 h 2 2
Q [ 1

q1

q2

q3

.

.

q D 2 2

q D 2 1 2 , T [ 1
t1

t2
t3
.

.

t D 2 2

t D 2 1 2
It is worthwhile to observe that the matrix L D changes when D changes,

not only in the number of its rows and columns, but also since the value of

h is proportional to the inverse of D .
Again the existence and uniqueness of the solution is a matter of inverti-

bility of a matrix, the matrix L D . The existence of L 2 1
D is ensured by Proposition

A1, which gives a sufficient condition for a given matrix to have a nonzero

determinant. Essentially it states that a symmetric tridiagonal matrix can be

inverted if the absolute value of any diagonal element is greater than or equal

to the sum of the absolute values of the other elements in the same row.
Furthermore , this inequality is required to be strict for at least one row.

Of course, whatever the meaning of h , we always have 2 1 h 2 $ ) 2 1 ) 1
) 2 1 ) . Furthermore, the elements of the first and of the last rows satisfy the

strict inequality. In order to discuss the existence of L 2 1
D we could also

compute explicitly the determinant of L D using equation (A.5), but this alterna-

tive procedure is certainly more involved than the one discussed above, which
easily follows from Proposition A1.

Therefore also in this example the solution exists and is unique. Again,

as one can easily see, the conclusion is totally independent of the nature of

h , and whether or not it belongs to R0.
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Example 3. L(t, q(t), qÇ (t)) 5 1±4 qÇ 2(t)t2 1 q(t) 1 1±2 q2(t)t).
Our functional is now

J[q] 5 #
2

1 1 1

4
qÇ 2(t)t2 1 q(t) 1

1

2
q2(t)t 2 dt

and we look for the extremum of J[q] with the boundary conditions q(1) 5
q(2) 5 0. We have chosen this new interval for t since it will allow a simpler

discussion of the discretization error; see the last section. The SELE produces
the following differential equation:

1

2
qÈ (t)t2 1 qÇ (t)t 5 1 1 q(t)t (3.8)

which is a nonhomogeneous linear differential equation with nonconstant
coefficients. Due to the form of this equation we cannot easily apply the

usual theorem on the existence and unicity of solutions of a differential

equation. Therefore we are not sure a priori that a solution really exists. We

will show that our method easily gives an answer to this question, and actually

a positive one.

After some algebraic computation we get the following system of
equations:

2qk 2 qk 2 1 2 qk 1 1

2 h 2 t2k 1
qk 2 qk 2 1

2
2

qk 2 qk 2 1

h
tk 1 1 1 qktk 5 0 (3.9)

for all k 5 1, 2, . . . , D 2 1, with the boundary conditions q0 5 q(1) 5 0

and q D 5 q(2) 5 0.
First of all, using relations (3.4), we notice that these equations are,

as expected, the discretized version of equation (3.8). We write (3.9) in a

matricial form:

N D 2 1Q 5 2 2 h 2U (3.10)

where the vectors Q and U are the same as in the first example, while

N D 2 1 [ 1
A1 C1 0 . . 0 0

B2 A2 C2 0 . . 0

0 B3 A3 C3 0 . .

. . . . . . .

. . . . . . .

0 0 . . B D 2 1 A D 2 2 C D 2 2

0 0 . . 0 B D 2 1 A D 2 1 2
Here we have defined the following quantities
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5
Ak 5 2t2

k 1 2tk h 2 2 2tk h 1 h 2

Bk 5 2 (tk 2 h )2

Ck 5 2 t2k

It is worthwhile to notice that N D 2 1 is actually a symmetric tridiagonal

matrix since, recalling that tk 5 tk 2 1 1 h , it easily follows that Ck 5 Bk 1 1,

" k 5 1, 2, . . . , D 2 2.

In order to show that the matrix above can be inverted, we again make

use of Proposition A1. We need therefore to verify that ) Ak ) $ ) Ck ) 1 ) Ck 2 1 )
for all k 5 1, 2, . . . , D 2 1, where we put C0 5 C D 2 1 5 0, and that the

strict inequality holds at least for one value of k.
Since ) Ck ) 5 t2k and ) Ak ) 5 ) (tk 2 h )2 1 t2k 1 2tk h ) 5 Ak we need to

show that Ak 2 ) Ck ) 2 ) Ck 2 1 ) 5 Ak 1 Ck 1 Ck 2 1 $ 0. This is certainly

verified since, for all k 5 2, 3, . . . , D 2 2,

Ak 1 Ck 1 Ck 2 1 5 2tk h 2

Let us now verify that the strict inequality holds, say, for k 5 D 2 1. In this

case, in fact, we have

A D 2 1 1 C D 2 1 1 C D 2 2 5 A D 2 1 1 C D 2 2 5 t 2
D 2 1 1 2t D 2 1 h 2 . 0

strictly, even if h P R0, since st[t D 2 1] 5 2.

Obviously a strict inequality also holds for k 5 1, for all choices of

D P N*.
We conclude that it is possible to invert the matrix N D 2 1 whatever D is

chosen to be, s-finite or ns-finite, so that the solution of (3.10) exists and

is unique.

Example 4. L(q(t), qÇ (t)) 5 1±2 (qÇ 2(t) 2 q2(t)).
This example shows that our procedure gives nontrivial information

even in the situation in which the standard solution exists but is not unique.

Let us consider the functional

J[q] 5
1

2 #
p

0

(qÇ 2(t) 2 q2(t)) dt

and let us try to find the extremum of J[q] with the boundary conditions

q(0) 5 q( p ) 5 0. It is easily seen that q(t) 5 B sin(t) is a solution of the
SELE for any choice of the constant B. Therefore infinite solutions exist.

Our system is already in a matricial form,

A D 2 1 Q 5 0 (3.12)

where A D 2 1 is the following ( D 2 1) 3 ( D 2 1) matrix:
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A D 2 1 [ 1
2 2 h 2 2 1 0 . . 0 0

2 1 2 2 h 2 2 1 0 . . 0

0 2 1 2 2 h 2 2 1 0 . .

. . . . . . .

. . . . . . .

0 0 . . 2 1 2 2 h 2 2 1

0 0 . . 0 2 1 2 2 h 2 2
and Q is as in Example 1. In the above matrix h depends on D and should

be substituted with p / D . We also observe that equation (3.12) can be obtained

using Proposition 2.

It is easy to see that for D finite, det A D 2 1 is in general different from

zero, so that the matrix A D 2 1 can be inverted and a unique solution exists,

and is obviously Q 5 0. This existence follows from explicit computation

and not from the use of Proposition A1, since its hypotheses are not satisfied

by this matrix. We are now interested in understanding what happens if D
is taken in N*, not s-finite.

Let us first observe that ) 2 2 h 2 ) , 2 ) 2 1 ) , so that the determinant of

A D 2 1 is given, for all values of D , by equation (A.4), and can be put in the form

det A D 2 1 5 ( 2 1)( D 2 1) sin[ D arccos ( p 2/2 D 2 2 1)]

sin[arccos ( p 2/2 D 2 2 1)]
(3.13)

An easy computation shows that, when h P R0,

st F det A D 2 1

2 p 2/24 D G 5 1

which implies that det A D 2 1 behaves like 2 p 2/24 D when D increases in N*.

We conclude therefore that in this ª limit.º st[det A D 2 1] 5 0, so that the

inverse of the matrix fails to exist when h P R0.

It is worth stressing the relevance of boundary conditions for the exis-

tence of a unique solution in this example. It is obvious that the SELE qÈ (t) 1
q(t) 5 0, with q(0) 5 q(tf) 5 0, gives the unique solution q(t) 5 0 whenever

tf Þ l p , l P Z \ {0}. If, on the contrary, tf 5 l p , l P Z \ {0}, then the equation

admits infinite solutions. Is this duality preserved by our approach?

The answer is that, indeed, we recover this situation also with our

framework. The main difference from the previous case is that now h is

equal to tf / D so that
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det A D 2 1 5 ( 2 1)( D 2 1) sin [ D arccos (t2f /2 D 2 2 1)]

sin [arccos (t2f /2 D 2 2 1)]

Therefore, after some calculations, we deduce that if tf 5 l p , then st[det
A D 2 1] 5 0. If tf Þ l p , the situation changes a great deal. We can prove that

det A D 2 1 ª divergesº to plus or minus infinity according to the sign of sin tf ,
so that the matrix A D 2 1 can be inverted and the solution exists, is unique,

and is obviously Q 5 0.

4. ESTIMATES OF ERRORS AND CONCLUSIONS

In Section 2 we discussed the error we make when the functional J[q]

is replaced with its discretized expression J[q1, q2, . . . , q D 2 1]. We showed
that this is negligible for small h , and is really infinitesimal for h P R0.

This section is devoted to estimating the differences between the standard

solution of the SELE (2.15), q(t), and the solutions (q1, q2, . . . , q D 2 1) of the

system of NSELE, (2.14). Even if it is more than reasonable to expect that

these solutions converge to q(t) when h is taken in R0, since in this limit the

system (2.14) is nothing but the SELE, an a priori estimate is better obtained.
This is again a problem widely discussed in numerical analysis, so that we

give here some examples and refer to refs. 17±20 for details and other

information on this subject.

Since the discretization procedure gives the same set of equations both

when applied to J[q] and directly to the SELE, we will consider here as starting

points the differential equations instead of the functionals generating them.

4.1. First Model

Let us consider the following class of first-order differential equations:

qÇ (t) 1 a(t)q(t) 5 r(t), q(a) 5 qi , q(b) 5 qf (4.1)

where we will suppose that there exists an s-finite positive constant a such

that a(t) # 2 a for all t P [a, b]. Furthermore, we will suppose that a(t) is
also bounded from below by another s-finite negative constant. Let us define

two operators L and L h as

L[y(t)] [ yÇ (t) 1 a(t)y(t)

for all differentiable functions y(t), and

L h [yi] [
yi 1 1 2 yi

h
1 a(ti)yi

for all sequences {yi}. With these definitions equation (4.1) becomes
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L[q(t)] 5 r(t), q(a) 5 qi , q(b) 5 qf (4.2)

while its discretization is

L h [qj] 5 r(tj), j 5 1, 2, . . . , D 2 1, q0 5 qi , q D 5 qf (4.3)

Our problem consists in finding an estimate for the difference ) q(tj) 2 qj )
for all j, which really expresses the validity of the discretization. To obtain

this estimate we will follow the same steps as in ref. 18. We start by defining

t j by the following equation:

L h [q(tj)] 5 r(tj) 1 t j (4.4)

so that, if the solution of equation (4.2) belongs to C 2([a, b]), we get

t j 5 L h [q(tj)] 2 L[q(tj)]

5
q(tj 1 1) 2 q(tj)

h
1 a(tj)q(tj) 2 qÇ (tj) 2 a(tj)q(tj) 5

h
2

qÈ ( j j)

where j j P [tj , tj 1 h ]. Since qÈ is continuous, by assumption, there exists a

positive s-finite constant M2 such that M2 5 supt P [a,b] ) qÈ (t) ) , ` . Therefore

we get

t [ sup
i

) t i ) 5
h
2

sup
i

) qÈ ( j i) ) #
h
2

M2

Let us now consider the following difference: ej [ qj 2 q(tj). It is easy to

see, using (4.3) and (4.4), that ej must satisfy the following set of equations:

ej (1 2 h a(tj)) 5 ej 1 1 1 h t j

for j 5 1, 2, . . . , D 2 1, which give, introducing e [ supi ) ei ) and using our

constraint on a(t), the following inequality:

e #
t
a

#
M2

2 a
h

Therefore we conclude that if h is taken in R0, the standard and the nonstan-

dard solutions belong at any time to the same monad.
It is interesting to notice that with a different discretization procedure,

the central difference one, in which qÇ (t) is replaced with the ratio (qi 1 1 2
qi 2 1)/2 h , we can prove that e can be estimated with an O( h 2). This loses

importance in our nonstandard approach since both h and h 2 have zero

standard part.

4.2. Second Model

The second example is described by the following class of second-order

differential equations:
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qÈ (t) 2 p(t)qÇ (t) 2 g(t)q(t) 5 r(t), q(a) 5 qi , q(b) 5 qf (4.5)

The relevant hypothesis on the functions p and g are the following: both must

be s-bounded, so that, for instance, there exists s-finite P* 5 supt P [a,b] ) p(t) ) .
Furthermore we will assume that there exists a strictly positive quantity g

*
such that g(t) $ g

*
for all t P [a, b].

The main steps are the same as before: we define two operators T and
T h as

T[y(t)] [ yÈ (t) 2 p(t)qÇ (t) 2 g(t)q(t)

and

T h [yi] [
yi 2 1 2 2yi 1 yi 1 1

h 2 2 p(ti)
yi 1 1 2 yi

h
2 g(ti)yi

so that equation (4.5) becomes

T [q(t)] 5 r(t), q(a) 5 qi , q(b) 5 qf (4.6)

and its discretized version is simply

T h [qj] 5 r(tj), j 5 1, 2, . . . , D 2 1 (4.7)

with q0 5 qi and q D 5 qf. With analogous definitions for t i , ei , t , e as in

the previous model, assuming now that the classical solution q(t) belongs to

C (4)([a, b]), we get following estimate:

e #
h

2q
* 1 P*M2 1

M4 h
6 2

where M2 5 supt P [a,b] ) qÈ (t) ) and M4 5 supt P [a,b] ) q(IV)(t) ) .
Again, this estimate shows that our procedure can be properly applied

to this class of models, in the sense that the standard and the nonstandard
solutions differ for infinitesimal quantities at any time.

4.3. Third Model

Another class of models easily controlled is described by the following

differential equation:

qÈ (t) 5 f(t, q(t)), q(a) 5 a , q(b) 5 b (4.8)

whose discretized version is

qi 2 1 2 2qi 1 qi 1 1

h 2 5 f(ti , qi), i 5 1, 2, . . . , D 2 1 (4.9)



1588 Bagarello

with y0 5 a and y D 5 b . In ref. 19 it is proven that if q(t) is a solution of

equation (4.8) and {qi} solves the system (4.9), if there exists s-finite M 5
supt P [a,b] ) q(IV)(t) ) , and if - f/ - y $ 0 for all t P [a, b] and for all y, then

) q(tj) 2 qj ) #
M h 2

24
(tj 2 a)(b 2 tj) ,

M h 2

24
(b 2 a)2 (4.10)

for all j 5 1, 2, . . . , D 2 1, which again proves the equivalence between

the standard and the nonstandard solutions.

We now apply the above estimates to the examples discussed in the
previous section.

Example 1 is a second-order differential equation which cannot be dis-

cussed within the structure of the Model 2 of this section, since the main

condition on the function g(t) is not satisfied. However, this example fits

into the hypothesis of Model 3 since we have f(t, q) 5 1 and therefore its

derivative with respect to q is identically zero. From this consideration we
conclude that whenever h P R0 then st[q(tj) 2 qj] 5 0 for any j 5 0, 1,

2, . . . , D , so that the solution of the NSA approach coincides with the

standard one.

Example 2, again a second-order linear differential equation, fits into

both Models 2 and 3. Also for this example we can conclude, therefore, that

whenever h P R0, then st[q(tj) 2 qj] 5 0 for any j 5 0, 1, 2, . . . , D .
Finally, the differential equation of Example 3 can be written, for t P

[1, 2], as

qÈ (t) 1
2

t
qÇ (t) 2

2

t
5

2

t2

It is now easily seen that all the hypotheses of Model 2 are satisfied. In
particular, for instance, g(t) $ 1 for all t P [1, 2]. Therefore also in this

example standard and nonstandard solutions at any time may differ by not

more than an infinitesimal quantity.

We have proposed an alternative method for finding the extremum of

a functional J[q] using nonstandard techniques. At first sight the language

we speak may appear quite similar to that of numerical analysis and, in fact,
many results coming from this branch of mathematics can be put into this

new framework. We must remember, in any case, that NSA allows us to

obtain rigorous results instead of the approximations one is always forced

to deal with in numerical computations.
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We also stress that in the examples discussed in the previous section

the existence of the unique solution was only a matter of computing a

determinant: a deep logical difference with respect to the standard situation!
In this paper we have only discussed the existence of an extremum of

the functional J[q]; we have not shown how to solve explicitly the system

(2.14). We will discuss a general strategy together with many examples in

a future paper.(21) In particular, among other things, the explicit solutions of

the NSELE for Examples 1±4 will be found and the above estimates and

conclusions will be explicitly obtained.
We end by noticing that a real limit of this paper is that even if

the system (2.14) can give nonlinear equations, all the examples discussed

here are related to linear differential equations. This is only a technical

limit, since such equations are translated, in our ns-language, into systems

of algebraic linear equations which are easily handled. Nonlinear differential

equations would produce nonlinear algebraic equations, much more difficult
to discuss.
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APPENDIX. MATRIX PROPERTIES

This Appendix is devoted to some results used in this paper related to

matrices and determinants. The relevance of these algebraic objects appear

clearly throughout the paper, as it follows from our discretization procedure.

We first consider the following matricial equation:

Anx 5 d

where An is an n 3 n tridiagonal matrix and x and d are two vectors:

An 5 1
b1 c1 0 . . 0 0

a2 b2 c2 0 . . 0

0 a3 b3 c3 0 . .

. . . . . . .

. . . . . . .

0 0 0 . an 2 1 bn 2 1 cn 2 1

0 0 0 . 0 an bn 2 ,
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x [ 1
x1

x2

x3

?
?

xn 2 1

xn 2 , d [ 1
d1

d2

d3

?
?

dn 2 1

dn 2 (A.1)

In ref. 19 it is stated that if An is positive definite, that is, if yT Any . 0 for

any n-dimensional vector y, then the above system can be solved, since det

An Þ 0. In ref. 19 the explicit steps for obtaining the solution are also
indicated. We first define b 1 5 b1 and d 1 5 d1 and then, for i 5 1, 2, . . . ,

n 2 1 we put b i 1 1 5 bi 1 1 2 (ai 1 1/ b i)ci and d i 1 1 5 di 1 1 2 (ai 1 1/ b i) d i. The

solution of the system is now obtained with the substitutions xn 5 d n / b n and,

for i 5 n 2 1, n 2 2, . . . 3, 2, 1 Þ xi 5 ( d i 2 ci xi 1 1)/ b i.

It is now very easy to prove the following useful recursion formula for
the determinant of the matrix An:

det An 5 bn det An 2 1 2 ancn 2 1 det An 2 2 (A.2)

simply computing the determinant det An with respect to the last row.

Again ref. 19 shows an interesting result for symmetrical tridiagonal

matrices:

Proposition A1. Let An be a symmetrical tridiagonal matrix as in (A.1)

with ci 5 ai 1 1 for all i 5 1, 2, . . . , n 2 1. Let us define c0 5 cn 5 0. Then,

if ) bi ) $ ) ci ) 1 ) ci 2 1 ) , i 5 1, 2, . . . , n, with the strict inequality holding true

at least for one value of i, An is positive definite, and therefore det An . 0.

Another useful result is related to n 3 n tridiagonal symmetrical matri-

ces like

Bn 5 1
b a 0 . . 0 0

a b a 0 . . 0

0 a b a 0 . .

. . . . . . .

. . . . . . .

0 0 0 . a b a

0 0 0 . 0 a b 2 (A.3)

We define Dn [ det Bn. In ref. 22 it is proven that, if ) b ) , 2 ) a ) ,
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Dn 5 an sin[(n 1 1) u ]

sin[ u ]
(A.4)

where u 5 arccos(b/2a). It is an easy exercise to generalize this result to

situations in which ) b ) . 2 ) a ) or ) b ) 5 2 ) a ) . In the first case we have

Dn 5 an sinh[(n 1 1) U ]

sinh[ U ]
(A.5)

where U 5 (cosh) 2 1(b/2a).

If ) b ) 5 2 ) a ) it is better to consider two different situations: the first,

described by ba . 0, corresponds to b and a with the same sign, the second,

when ba , 0, corresponds to b and a with opposite sign.

If ba . 0, we can obtain the value of Dn by taking the standard part of
(A.4) when st[ u ] 5 0. This gives

Dn 5 an(n 1 1) (A.6)

If ba , 0, we obtain Dn by taking the standard part of (A.4) when st[ u ] 5
p . This gives, in turn,

Dn 5 ( 2 a)n(n 1 1) (A.7)

It is interesting to notice that if b 5 2 and a 5 2 1, then Dn 5 n 1 1, which

is exactly the result we obtained in Example 1 using induction.
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